Пульсоксиметр. Теоретическая часть

Denis Artamonov
6 min readNov 22, 2020

--

Про сатурацию кислорода в нашем организме

Приветствую всех читателей телеграм-канала “Бегать просто”.

Во время пандемии COVID-19 резко вырос покупательский спрос на переносные пульсоксиметры. Они незаменимы и в жизни спортсменов для отслеживания функционального состояния до и после нагрузки, особенно на сборах в средне- и высокогорье. В сети выложено море информации о пульсоксиметрах. Мне же хочется познакомить вас с более чем интересным и полезным обзором от знаменитого легкоатлета, тренера, врача и разработчика программы активного долголетия Валерия Стародубцева. В первой части обзора — теоретическая информация, а во второй Валерий расскажет о практическом применении миниатюрного прибора пульсоксиметра.

Итак, начнем интересную теоретическую часть от Валерия Стародубцева.

Высота 3900 метров над уровнем моря. Гарабаши, гора Эльбрус.

Cатурация кислорода sP02

Общая протяженность всех сосудов человека в среднем составляет 86 000 км, общая площадь легких — около 100 кв.м. За сутки мы делаем примерно 20000 вдохов и вдыхаем около 10 куб.м воздуха, сердце сокращается около 100000 раз и прокачивает примерно 7 тонн крови. Зачем нужна эта титаническая работа? А нужна она для обеспечения одного из важнейших показателей — насыщения артериальной крови кислородом.

Мы можем прожить без пищи около месяца, без воды — около 7 дней. В организме создаются запасы жира и жидкости на случай отсутствия пищи и воды. К сожалению, природа не предусмотрела возможности накопления запасов кислорода в организме. Всего три минуты (для неподготовленных людей) отсутствия дыхания или сердцебиения полностью истощают запас кислорода в организме, и человек умирает.

Одной из главных функций крови является получение кислорода из легких и транспортировка его в ткани организма. В то же время, кровь получает углекислый газ из тканей, и переносит обратно в легкие.

Степень насыщения артериальной крови кислородом является одним из важнейших показателей кислородного обмена и указывает, достаточное ли количество кислорода поступает в организм.

Как кислород циркулирует в нашем теле

Атмосферный кислород попадает в наш организм через легкие благодаря дыханию. Каждое легкое содержит около трехсот миллионов альвеол, которые окружены кровеносными капиллярами. Стенки альвеол очень тонкие и пронизаны кровеносными сосудами.

Кислород поглощается из альвеол через капилляры альвеолярной мембраны, в то время как углекислый газ переходит из капилляров в альвеолы и выводится из легких в атмосферу. (У взрослых этот процесс обычно занимает 1/4 секунды во время вдоха).

Значительная часть кислорода, попавшего в кровь, связывается с гемоглобином в красных кровяных клетках, другая часть растворяется в плазме крови. Затем кислород транспортируется артериальной кровью по всему организму.

Кровь, насыщенная кислородом, попадает в левое предсердие и левый желудочек, и затем кровотоком поступает ко всем органам тела и их клеткам. Количество кислорода, поступающего в кровь, определяется главным образом степенью связывания гемоглобина с кислородом (легочный фактор), концентрацией гемоглобина в крови (фактор анемии), и сердечным выбросом (сердечный фактор).

Основным перевозчиком кислорода в теле человека является гемоглобин.

Одна молекула гемоглобина может удержать 4 молекулы кислорода, а 1 грамм гемоглобина может связать до 1,39 миллилитров кислорода. Поскольку 100 мл крови содержит около 15 грамм гемоглобина, то гемоглобин, содержащейся в 100 мл крови может связываться с 20,4 миллилитрами кислорода.

Кислород, связанный с гемоглобином, и кислород, растворенный в крови, имеют примерно следующее соотношение:

Растворенный кислород 1,45%

Связанный с гемоглобином кислород 98,55%

В связи с этим фактом уровень гемоглобина в крови имеет огромное значение.

Что такое сатурация кислорода

Каждая молекула гемоглобина может связывать до 4-х молекул кислорода. Эта связь стабильна, когда молекула гемоглобина связана с 4-мя молекулами кислорода или когда гемоглобин вообще не связан с молекулами кислорода. Состояние очень неустойчиво, когда существует связь с 1–3 молекулами кислорода. Поэтому гемоглобин присутствует в организме в двух видах. Либо лишенный кислорода гемоглобин (Hb), либо гемоглобин, связанный с 4-мя молекулами кислорода — оксигемоглобин (HBO2).

Сатурацией кислорода называют отношение количества оксигемоглобина к общему количеству гемоглобина в крови, выраженное в процентах. Сатурацию обозначают символами: SaO2 или SpO2. (В большинстве случаев пользуются символом SpO2)

Определение сатурации можно записать в виде формулы: SpО2 = (НbО2 / НbО2 + Нb) х 100%

Существует некоторая путаница, обусловленная употреблением аббревиатур SpO2 и SaO2. Употреблять сокращение SpO2 следует в том случае, когда речь идет о сатурации, измеренной неинвазивным (без внутреннего вмешательства) методом, поскольку в этой ситуации результат измерения зависит от особенностей метода. Термин SaO2 следует употреблять для обозначения истинной сатурации, измеренной лабораторным инвазивным методом

Показатели SpO2 связаны с парциальным давлением кислорода в крови (PaO2), которое в норме составляет 80–100 мм рт. ст. Снижение PaO2 влечет за собой снижение SpO2, однако зависимость носит нелинейный характер, например:

80–100 мм рт.ст. PaO2 соответствует 95–100% SpO2

60 мм рт.ст. PaO2 соответствует 90% SpO2

40 мм рт.ст. PaO2 соответствует 75% SpO2

Этот факт нужно учитывать при подъеме в горы или при полетах на больших высотах.

При снижении парциального давления кислорода ниже определенных порогов наступает кислородное голодание. Возможна потеря сознания или даже смерть.

Какие факторы вызывают ошибки пульсоксиметра?

Так как пульсоксиметр измеряет все параметры неинвазивным методом, то на точность измерений могут влиять некоторые внешние и внутренние факторы. Следует учесть это и принять меры предосторожности. А также необходимо учесть, что пульсоксиметрия является непрямым методом оценки сатурации и не дает информации об уровне pH (водородный показатель) и PaCO2 (парциальное давление углекислого газа в артериальной крови). Таким образом, не представляется возможным оценить в полной мере параметры газообмена клиента, в частности степень гиповентиляции и гиперкапнии.

1. Аномальный гемоглобин. Кровь может содержать ненормальный гемоглобин. Карбоксигемоглобин и метгемоглобин не участвуют в доставке кислорода. Наличие в крови этих типов гемоглобина может привести к ошибкам в измерении SpO2. Например, отравление угарным газом (высокие концентрации карбоксигемоглобина) может давать значение сатурации около 100%. Анемия требует более высоких уровней кислорода для обеспечения транспорта кислорода. При значениях гемоглобина ниже 5 г/л может отмечаться 100% сатурация крови даже при недостатке кислорода.

2. Медицинские красители. Наличие в крови пациента медицинских красителей может привести к искажениям при прохождении красных и инфракрасных волн через ткани и исказить результаты измерений. К таким красящим веществам относятся: метиленовый синий, индоцианин зеленый, индигокармин, флуоресцеин.

3. Маникюр и педикюр. Лак для ногтей или накладные ногти могут привести к неточным показаниям SpO2, так как они могут уменьшать и искажать волны, излучаемые датчиком пульсоксиметра.

4. Движение пальца в датчике, вызванное движением тела. Движение пальца в датчике может вызвать шум, который повлияет на вычисления SpO2 и ЧСС.

5. Блокировка кровотока в артериях и пальцах. Возможность или невозможность выполнения измерений зависит от степени пульсаций в артериях. Если происходит блокировка кровотока, то точность измерений падает. Кроме того, при перегибах или усиленном давлении на пальцы, например, при занятиях на велотренажере, возросшее давление в пальце может привести к искажению световых волн и ошибкам в измерении.

6. Плохое периферическое кровообращение. Значительное снижение перфузии периферических тканей (холод, шок, гипотермия, гиповолемия) ведет к уменьшению или исчезновению пульсовой волны. Если нет видимой пульсовой волны на пульсоксиметре, любые цифры процента сатурации малозначимы. Если руки холодные, необходимо усилить кровоток путем массажа или разогрева пальцев.

7. Яркий свет (бестеневые лампы, флуоресцентные лампы, ИК лампы, прямой солнечный свет и т.д.). Пульсоксиметр, как правило, защищен от внешнего освещения. Однако, если освещение слишком сильное, это может привести к ошибкам. Необходимо защищать сенсор от лучей мощных бестеневых ламп и инфракрасных ламп. Например, с помощью хирургической салфетки.

8. Окружающие электромагнитные волны. Рядом расположенные электроприборы, которые являются источниками сильных электромагнитных волн, такие как телевизоры, мобильные телефоны, медицинские приборы могут влиять на точность измерений и работу пульсоксиметра.

9. Неправильное положение датчика. Необходимо, чтобы обе части датчика находились симметрично, иначе путь между фотодетектором и светодиодами будет неравным и одна из длин волн будет «перегруженной». Изменение положения датчика часто приводит к внезапному «улучшению» сатурации.

Во второй части мы поговорим с Валерием Стародубцевым о практической стороне применения прибора. Как и для чего делать задержки дыхания, найти текущий уровень порога анаэробного обмена с помощью пульсоксиметра.

--

--